

Urban Scale Aerosol Dispersion Modeling

Andy Wissink Adaptive Urban Dispersion Modeling

April 15, 2004

Prediction of aerosol dispersion is a critical homeland security need

- High fidelity models that predict the spread of airborne hazardous materials are important
 - Field experiments are difficult and expensive
 - Assist in emergency planning and response scenarios
 - Guide effective sensor placement
 - Event reconstruction (with measurements)

NARAC: An operational release advisory center at LLNL

- National Atmospheric Release Advisory Center
 - Supports the DHS Emergency Preparedness and Response (EPR) directorate
 - Provides detailed predictions of atmospheric releases for real-time emergency response, pre-planning, and post-incident assessments
 - Incorporates hierarchy of models for different types of release events, distance scales, and response times

NARAC has models for urban dispersion simulation

• FEM3MP is the primary urban dispersion modeling code used in the atmospheric

sciences division in NARAC

- Finite element incompressible CFD
- Structured mesh
- LES & RANS turbulence models
- Atmospheric chemistry

Current urban modeling capability has some limitations

- Unable to resolve complex building geometries
- Labor-intensive grid generation
- Limited capability for fast evolving flows
- Limited range of release scenarios (e.g., moving sources)

We are developing advanced meshing tools to enhance capabilities

- Overture project has tools for rapid geometry-to-mesh (Rapsodi)
 - Rapid construction of surface grids from CAD data
 - Interfaces to fast volume grid generator from NASA (CUBES)

- SAMRAI infrastructure supports parallel AMR applications
 - Data structures for flexible mesh geometry
 - Adaptive mesh refinement
 - Scalability verified on > 1K processors

Couple technologies to develop an operational tool

FEM3MP

CFD code for urban dispersion

SAMRAI

Parallel adaptive mesh support

Overture

Rapid geometry to mesh capability

Next-generation Integrated Urban Dispersion Capability

- Automatic mesh construction from building datasets.
- Geometrically complex buildings and cityscapes
- Diverse urban environments: stadiums, arenas, subways, etc.
- Adaptive mesh refinement for enhanced fidelity: release points, building entrances, etc.
- Complex release scenarios: moving sources, etc.

Integrated approach will enable automated geometry to CFD analysis

Comp AD 04-DRC Wissink-8

Some demonstration calculations around complex building geometries

 Flow around stadium and sample cityscape with overset grids

Adaptive flow simulation over prototype cityscape with cut-cell grids

Automatic construction of grids from building datasets

- "metro" reads building geometry data and generates surface triangulation and CUBES input
- Prof. Marsha Berger, NYU Courant, is a CUBES co-developer and a collaborator on this project

Grid generation time reduced from weeks to minutes

Downtown Salt Lake City gridding example

 Structured grid constructed with existing tools required about 1 week

 Adaptive cut-cell grid generated with metro + CUBES required about 2 minutes

> 1.7M gridpoints, 6 levels refinement Surface grid – 30 sec with "metro" Volume grid – 45 sec with "CUBES"

Research Issues to be addressed in 2004-2005

Finite element boundary representation on cut-cell grids using "fictitious domain" algorithm

"conforming" mesh (old) "cut-cell" mesh (new)

LES

- Adaptive algorithms for finite element CFD solver
- **Turbulence models**

RANS

Building geometry information that incorporates new features (e.g. terrain)

We will use experimental data to verify and validate model accuracy

- Joint-Urban 2003 in Oklahoma City
- Urban 2000 in Salt Lake City
- Wind tunnel experiments

Release south of downtown (A)

Release in downtown area (B)

Comp AD 04-DRC Wissink-13

Longer term research issues

- Coupling models with different scales
- Integrate our external model with internal flow models (subways, arenas, etc.) – J. Shadid, SNL

- Large-scale cityscapes (e.g. Manhattan)
- Performance on diverse parallel architectures

A next-generation airborne dispersion modeling capability

- We are pursuing a new urban dispersion modeling tool by combining technologies developed in CASC and NARAC
- Fast problem setup and adaptive gridding capabilities will make the tool a candidate for inclusion in NARAC's operational set of models
- Anticipate tool with primary features will be ready by late 2005

